

LA-UR-21-24539

Approved for public release; distribution is unlimited.

Title: Nuclide Identification, Quantification, and Uncertainty

Author(s): Karpius, Peter Joseph

Intended for: Nuclear Forensics Technical Measurement Training, Horia Hulubei

National Institute of Physics and Nuclear Engineering, M gurele,

Romania (TBD)

Issued: 2021-05-11

Nuclear Forensics Technical Measurement Training

- Gamma Spectrometry -

Nuclide Identification, Quantification, and Uncertainty

Magurele, Romania
Date: after Corona

Objective

The objective of this presentation is to provide an overview of nuclide identification, quantification, and uncertainty using gamma-ray spectrometry.

Part 1: Nuclide Identification

The first step in a gamma-ray analysis of an item is to determine what gamma-emitting nuclides are present in the item.

Gamma-ray spectrometry can be used for relatively rapid, initial, non-destructive identification of radionuclides in an item of interest before destructive analysis methods are employed.

Gamma Rays as "Fingerprints for Radionuclides"

• Gamma rays are specific to a radionuclide

<u>Gamma-Ray Spectrum</u>: Histogram of energies deposited in the detector.

Gamma Rays as "Fingerprints for Radionuclides"

• The observed gamma-ray signature can change with measurement conditions such as shielding or detector type.

Photon Interactions with Matter

Photoelectric Effect

Compton Scattering

Pair Production and Annihilation

- Required to measure full-energy peaks
- Also contributes to continuum

- Origin of the continuum
- Also contributes to full-energy peaks

- Single and double escape peaks
- Annihilation radiation
- Also contributes to full-energy peaks

How do Photon Interactions Affect the Data?

Using Pattern Recognition

- Pattern recognition can help expedite analysis
- Different measurement conditions can change the observed pattern

Using an Energy-Based Search

- An energy-based confirmation of nuclide identification should always be used
- You must have a good energy calibration to do this.

Understand the Natural Background

Comparing your Unknown Item to Background

Other Spectral Effects: Random Coincidence

Other Spectral Effects: True Coincidence

2 simultaneous γ -rays from same nucleus in the <u>far</u> field

2 simultaneous γ -rays from same nucleus in the near field

Escape Peaks & Annihilation Radiation

Escape Peaks

Annihilation Radiation

Neutron-Induced Gammas

- Neutron-Capture Lines
- Neutron-Inelastic Scattering Lines
- Counts above 2614.5 keV
- Neutron "ski slopes" in germanium

Bremsstrahlung

Degenerate Solutions

- Sometimes (not often) the search result will clearly indicate a single isotope
- Usually, there will be several possible sources

Real-World Example

• Shipment seized by U.S. Customs on suspicion of smuggled special nuclear material.

Submission email: "Per our conversation, see GR135 file for analysis. In addition to the neptunium-237 we are getting a plutonium239.(See attached file) sixmin~1.dat"

Real-World Example

- Radioactive boxes contain glass.
- GR-135 reports Np-237 → Pu-239.
- Analysts identified Lu-176, no Np, no Pu

Part 2: Nuclide Quantification

The second step in a gamma-ray analysis of an item is often to determine how much of each gamma-emitting nuclide is present in the item.

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering the questions what, where, how, when and why an illicit activity occurred and possibly who was involved

Mathematics for Activity Quantification

$$Activity = \frac{C(E)}{Y(E)} \cdot \frac{1}{\varepsilon_{Abs}(E)}$$

$$Mass = Activity \cdot \frac{T_{1/2}}{\ln 2} \cdot \frac{A}{6.022E + 23}$$

C(E): count rate for a specific gamma-ray peak

Y(E): yield (branching ratio) for that gamma ray

 ϵ_{Abs} (E): absolute detection efficiency at that gamma ray energy

 $T_{1/2}$: half life of the nuclide emitting that gamma ray

A: atomic mass of this nuclide

Absolute Detection Efficiency

Of the gamma rays emitted ...

<u>Self Attenuation</u>: What fraction escape the source with their full energy?

what fraction deposit their full

energy in the detector?

<u>External Attenuation</u>: Of those, what fraction transmit through any intervening material with their full energy?

Solid Angle

Solid angle fraction out of 4p steradians for a detector with radius R at a distance r from the source where $\theta = \tan^{-1}(R/r)$:

$$\frac{\Omega}{4\pi} = \frac{1}{2} (1 - \cos \theta)$$

Inverse-Square Law

If you double the distance, the count rate drops by a factor of 4

The Importance of Source-to-Detector Distance

The observed dose rate in these two cases could be the same.

We need to know the source-todetector distance to calculate the activity or mass of the source.

But the farther source is much more intense!

External Attenuation

• If we know the type and thickness of intervening (external) attenuating materials we can correct for their effect.

Self Attenuation

• E.g. SNM metal is high-Z, high- ρ material. It is very good at attenuating gamma rays, even those from itself.

Red Arrows: 186 keV Blue Arrows: 1001 keV

~ 2.5 mm of U metal totally blocks 186 keV

~ 50 mm of U metal totally blocks 1001 keV

At our detector we see the *same amount of 186-keV* gammas for both cases above. But we see less of the 1001-keV gammas <u>in a relative sense</u> from the thin-walled box than the solid block.

Self Attenuation

• We must integrate over the attenuation experienced at all points in the item at all energies of interest.

In the 1-dimensional case below, photon 1 must transit much more material to escape the item than photon 2.

Relative Efficiency

General Expression for Peak Area Count Rate:

$$\dot{C}(E) = \lambda N \cdot Y(E) \varepsilon_A(E)$$

Rearrange

$$\varepsilon_A(E) = \left[\frac{1}{\lambda N}\right] \frac{\dot{C}(E)}{Y(E)}$$

 $\dot{C}(E)$ = count rate at energy E λ = decay constant N = number of nuclei Y(E) = branching ratio (yield) at energy E $\varepsilon_A(E)$ =absolute efficiency at energy E

• Relative efficiency is proportional to counts and branching ratio

$$\mathcal{E}_R \propto \frac{C}{Y}$$
 Relative Efficiency depends on:

Intrinsic Detector Efficiency

Attenuation

'Flattening' the Relative Efficiency Curve

- A shielded ²²⁶Ra source was measured
- Our goal is to vary the amount of Pb to "flatten" the RE curve
 - The corrected data should be linear with energy
 - The slope of the corrected data should be ~zero
- Once we have corrected for RE effects we can calculate the activity

The green curve is a fit to the raw RE data.

At each energy we apply the intrinsic detector efficiency and vary the shielding to obtain the corrected curve

$$RE_{corr} = RE \cdot \frac{e^{+\mu\rho x}}{\varepsilon_{int}}$$

Case 1: Bare Point Source

- Here we measure the activity A of an unshielded 137Cs source
 - Distance: 25 cm
 - Detector: ORTEC Detective (ε_Abs (662 keV)@ 25 cm = 2.7E-04)
 - 662-keV photon yield: 0.851
 - Live Time: 110112 seconds
 - 662-keV Peak Area: 7823347 +- 2851

- Count Rate ≅ 71 cps

$$A = \frac{\dot{C}(E)}{Y(E)} \cdot \frac{1}{\varepsilon_{Abs}(E)}$$

$$A = \frac{71}{0.851} \cdot \frac{1}{2.7 \times 10^{-4}} = 3.1 \times 10^{5} \pm 113 \, Bq^{*}$$

Case 2: Point Source + External Attenuation

Here we measure a shielded ²²⁶Ra source

- Distance: 25 cm

- Detector: ORTEC Detective

- Live Time: 301 seconds

Attenuation correction at each energy

Raw RE curve

Corrected RE curve

$$A = \frac{\dot{C}(E)}{Y(E)} \cdot \frac{1}{\varepsilon_{Abs}(E)} \cdot e^{+\mu\rho x}$$

Error-Weighted Activity = $4.21E6 \pm 2.47E4$ Bq

E [keV]	Yield	Counts	Err	RE	Err	DetEff	Mu	e^+upx	RE Corr	En	Activity [Bq]	Err
242	7.43E-02	11208	171	1.51E+05	2.30E+03	7.30E - 04	7.28E+00	6.40E+00	1.32E+09	2.02 <mark>E+07</mark>	4.40E+06	6.71E+04
295	1.93E-01	42051	238	2.18E+05	1.23E+03	5.65E-04	4.72E+00	3.33E+00	1.28E+09	7.25 E+06	4.27E+06	2.41E+04
352	3.76E-01	91693	323	2.44E+05	8.60E+02	4.47E-04	3.33E+00	2.33E+00	1.28E+09	4.49 E+06	4.24E+06	1.49E+04
609	4.61E-01	98212	322	2.13E+05	6.99E+02	2.28E - 04	1.39E+00	1.43E+00	1.33E+09	4.37E+06	4.42E+06	1.45E+04
665	1.46E-02	2862	84	1.96E+05	5.73E+03	2.08E - 04	1.24E+00	1.37E+00	1.29E+09	3.77E+07	4.29E+06	1.25E+05

Case 3: Extended Source + External Attenuation

Here we measure a shielded Pu source

- Distance: 91 cm

Detector: LN2-cooled HPGe

Live Time: 986 seconds

At each energy we correct for detector efficiency, external attenuation, and now **self attenuation**.

In this example, self attenuation limits our calculated mass to < 20% of the true Pu mass.

Part 3: Uncertainty Quantification

We must consider the uncertainty involved at each step and how it propagates to the final result.

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering the questions what, where, how, when and why an illicit activity occurred and possibly who was involved

What is Uncertainty?

- Every measurement result is subject to random and possibly systematic fluctuations that we call 'uncertainty' (and sometimes 'error')
- Every measurement result should be stated with its associated uncertainty.
 - E.g. Uranium Enrichment: ^{235}U % = $^{19.9} \pm 1.3$ %
- If we repeat a measurement many times we will get a <u>distribution</u> of results. The width of that distribution is related to the uncertainty.

Uncertainty Definitions

- <u>Accuracy</u>: Describes the average value compared to the true value.
- Precision: Describes the variations or dispersion of replicate measurements.
- Bias: Difference between the average value and the true value.

- Random Error: Variable error on replicate measurements.
- <u>Systematic Error</u>: All replicate measurements have the same bias.

Probability Distributions: Poisson

- Probability of x number of events occurring in a given period of time or space.
- The events occur independently
- The probability that an event occurs does not change with time.

E.g.: 1 ng of 239 Pu \rightarrow 2.3 decays/sec. What is the probability of 3 decays occurring in a 2-second period?

- 1 period = 2 sec $\rightarrow \lambda$ = 4.6 decays/sec.
- x=3 decays
- $P(x=3) = 4.6^3 e^{-\lambda}/3! = 0.16$

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Probability Distributions: Gaussian

- X = center of distribution = average of many measurements
- σ = width of distribution
 - = standard deviation after many measurements
 - = uncertainty determined from Counting statistics from one measurement
- For a large number of measurements, X is a good estimate of the true value.

$$G(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-X)^2/2\sigma^2}$$

Properties of the Gaussian Distribution

Probability within:

$$1 \sigma = \int_{-1\sigma}^{1\sigma} G(x) = 68.3\%$$

$$2 \sigma = \int_{-2\sigma}^{2\sigma} G(x) = 95.5\%$$

$$3 \sigma = \int_{-3\sigma}^{3\sigma} G(x) = 99.7\%$$

- How does this relate if only one measurement is made?
- If one measurement is made, there is a 68.3% Chance that the true value is within one s and a 95.5% Chance that the true value is within two s.

Propagation of Error

The error, σ_f , of a function, $f(x_1, x_2, \dots, x_i)$, with x_i random variables is propagated using the follow method:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x_1}\sigma_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\sigma_{x_2}\right)^2 + \dots + \left(\frac{\partial f}{\partial x_i}\sigma_{x_i}\right)^2$$

For example, if
$$D = A - B$$
, then $\sigma_S = \sqrt{(\sigma_A)^2 + (\sigma_B)^2}$

А	12 ± 0.3
В	10 ± 0.4
D	2 ± 0.5
Р	120 ± 5.6

if
$$P=A\times B$$
, then $\sigma_P=\sqrt{(B\sigma_A)^2+(A\sigma_B)^2}$
$$\sigma_P=\sqrt{\left(AB\frac{\sigma_A}{A}\right)^2+\left(AB\frac{\sigma_B}{B}\right)^2}$$

$$\sigma_P=P\sqrt{\left(\frac{\sigma_A}{A}\right)^2+\left(\frac{\sigma_B}{B}\right)^2}$$

Example: Uncertainty on the Activity of an Unshielded Point Source

$$A = \frac{\dot{C}_N(E)}{Y(E)} \cdot \frac{1}{\varepsilon_{Abs}(E)}$$

Here we stress net count rate with the subscript N.

Take the simple case where there is only uncertainty on the net count rate $C_N(E)$:

$$\sigma_{Y}=0$$

$$\sigma_{A}^{2} = \left(\frac{\partial A}{\partial C}\right)^{2} \cdot \sigma_{\dot{C}_{N}}^{2} = \left(\frac{1}{Y} \cdot \frac{1}{\varepsilon_{Abs}}\right)^{2} \cdot \sigma_{\dot{C}_{N}}^{2}$$

$$\sigma_{A} = \frac{\sigma_{\dot{C}_{N}}}{Y \cdot \varepsilon_{Abs}}$$

 $\sigma_A = \frac{\sigma_{\dot{C}_N}}{V \cdot \varepsilon_M}$ OK so what is $\sigma_{\dot{C}_N}$?

Net Count Rate

$$\dot{\mathcal{C}}_N = \dot{\mathcal{C}}_T - \dot{\mathcal{C}}_B$$

Net Count Rate

Total Count Rate

Background / Continuum Count Rate

$$\dot{C}_N = rac{C_N}{t_L} = rac{1}{t_L} \left(C_T - C_B
ight)$$
 Live Time

Total - Background Counts

Uncertainty on Net Count Rate

Assume there is

$$\sigma_{\dot{C}_N}^2 = \left(\frac{\partial \dot{C}_N}{\partial t_L}\right)^2 \sigma_{c_L}^2 + \left(\frac{\partial \dot{C}_N}{\partial C_T}\right)^2 \sigma_{C_T}^2 + \left(\frac{\partial \dot{C}_N}{\partial C_B}\right)^2 \sigma_{C_B}^2$$

$$\sigma_{\dot{C}_N} = \frac{1}{t_L} \sqrt{\sigma_{C_T}^2 + \sigma_{C_B}^2} = \frac{1}{t_L} \sqrt{\sqrt{C_T}^2 + \sqrt{C_B}^2}$$

$$\sigma_{\dot{C}_N} = \frac{1}{t_L} \sqrt{C_T + C_B}$$

The total and background counts are assumed to follow Poisson statistics

Uncertainty on Activity of a Bare Point Source

$$\sigma_{A} = \frac{\sigma_{\dot{C}_{N}}}{Y \cdot \varepsilon_{Abs}} = \frac{\sqrt{C_{T} + C_{B}}}{t_{L}Y \cdot \varepsilon_{Abs}}$$

Using the values from our previous example of an unshielded point source:

$$\sigma_A = \frac{\sqrt{7976814 + 153467}}{110112 s \cdot 0.851 \cdot 2.7E - 4}$$

$$\sigma_A = 113 Bq$$

Using a 95% confidence interval (2 σ): Our previously-calculated Activity = $3.1 \times 10^5 \pm 226 \, Bq$

Questions or Comments?